

Public Health Sciences

Developing Exposure Risk Profiles for Populations Experiencing Wildfire Smoke

Kathryn C Conlon, PhD MPH Assistant Professor, <u>kcconlon@ucdavis.edu</u>

Caitlin G Jones, MS PhD Student, <u>cgjones@ucdavis.edu</u>

Overview

- 1. Introduction
- 2. Phase I Exposure Risk Profiles
- 3. Phase II Epidemiologic Analysis
- 4. Under Review: Institutional Drivers of Planning for Cascading Disaster Risks

Introduction

Differential health effects of wildfire smoke exposure

- Sensitivity to impacts of exposure
- Risk of exposure

Exposure may differ by population characteristics

- Improve exposure assessment
- Estimate population-level changes in causespecific disease burden

Objectives

PHASE I

Construct place-based exposure risk profiles to wildfire smoke

PHASE II

Examine whether exposure risk profiles predict adverse health impacts

Public Health Sciences

PHASE I

Building Wildfire Smoke Exposure Risk Profiles

Approach

Review literature on:

- Environmental, demographic, socio-economic, health status, and housing risk factors
- Identify measurable indicators of risk

Descriptive maps

Define census tract-level risks

Risk Categories

Exposure Risk Profiles to Wildfire Smoke

Measurable Indicators

Community-level

- US Census American Community Survey 5-year estimates (ACS)
- CDPH, California Building Resilience Against Climate Effects (CalBRACE)
- California Energy Commission Residential Appliance Saturation Study (RASS)
- CAL FIRE

Individual-level

California Department of Health Care Access and Information (HCAI)

Descriptive Maps

Examine community-level measures

- Range of values
- Distribution of higher risk

Sacramento region

• Proof of concept

Home Environment

- A/C use
- Housing age
- Low-income housing

Outdoor Environment

Tree canopy

Sacramento Tree Canopy Tree_Canopy_PCT 65.253109 - 81.117117 81.117118 - 86.835358 86.835359 - 90.728329 90.728330 - 94.581654 94.581655 - 98.856483 Percent land not covered by tree canopy in Sacramento census tracts

Risk Behavior

- Commute transportation
- Occupational industry
- Sex

Sacramento County Tracts

Highest risk commute

0

0-15%

15-25% 25-50%

50-100%

Data Source: US Census ACS, 2015-2019

Data Source: US Census ACS, 2015-2019

Adaptive Capacity

- Income
- Education
- Language spoken at home
- Race/ethnicity

Sacramento census tracts

Data Source: US Census ACS, 2015-2019

Sacramento census tracts (including Indo-European, Asian, and Pacific Islander languages)

Data Source: US Census ACS, 2015-2019

Exposure Risk Profiles to Wildfire Smoke

Definitions of Exposure Risk

- 1. Large proportion of the **census tract population** is higher risk
- 2. Large proportion of the **higher risk population** resides in the census tract

Public Health Sciences

Definitions of Exposure Risk

- 1. Large proportion of the **census tract population** is higher risk
- 2. Large proportion of the **higher risk population** resides in the census tract

Definitions of Exposure Risk

Next Steps

- 1. Map each exposure risk variables
- 2. Construct risk matrix to classify vulnerable populations
- 3. Examine intersections of exposure risk profiles and wildfire smoke exposures

PHASE II

Linking health data to exposure risk profiles

Approach

- Cases of respiratory, cardiovascular, and cerebrovascular morbidities
- Hospitalization and ED data from HCAI *anticipated Summer 2022*
- Link to community-level exposure risk profiles and wildfire smoke exposures

Anticipated Results

Higher risk of exposure to wildfire smoke will result in increased vulnerability to adverse health outcomes

The relationship may be modified by:

- Age
- Urbanicity, and
- Proximity to high fire risk landscapes

Institutional Drivers of Planning for Cascading Disaster Risks:

The case of Wildfire-Induced Air Pollution in California

Eric Chu Asiya Natekal Gemma Waaland Michele Barbato Kathryn Conlon

Under Review, International Journal of Disaster Risk Reduction

Exposure Risk Profiles to Wildfire Smoke

Planning for Cascading Risks

Cascading Risk Events

Exposure to multiple hazard impacts lead to successive, increasingly severe risks to populations and assets

- Drought
- Extreme heat
- Rapid WUI development

California wildfire advances as heat wave blankets US West By DAISY NGUYEN July 10, 2021

Goal: Assess knowledge on institutional approaches to addressing wildfireinduced air pollution in California

Methods

1. Qualitative document analysis

Selection criteria:

- a. Relatively recent publication of local hazard mitigation plan and either community wildfire protection plan or air quality hazard mitigation plan
- b. High exposure to wildfire impacts, poor air quality a. Identified by California agencies (CalFIRE, OEHHA)
- c. Clear engagements with wildfire, climate change, and air quality protection efforts
- 2. Ranked local hazard mitigation plans for categories: "wildfire", "air quality", and "climate change"
- 3. Focused on:
 - Socioeconomic vulnerability
 - Policy and institutional responses
 - Planning and resourcing processes

Counties Selected for Analysis

County Name	LHMP	CWPP	AQP*
Butte	2019	2015	
Colusa	2018		
Contra Costa	2018	2019	2017
Del Norte	2019	2005	
Fresno	2018		
Humboldt	2019	2019	
Kern	2012		
Lake	2018	2009	
Los Angeles	2014		2016
Modoc	2016	2017	
Napa	2020		2017
Nevada	2017	2019	
Placer	2016	2012	
Sacramento	2016	2014	
San Bernardino	2017		2016
San Luis Obispo	2019	2019	
San Mateo	2016	2018	2017
Santa Clara	2017	2016	2017
Shasta	2017	2008	
Siskiyou	2018	2019	
Sonoma	2016		2017

Public Health Sciences

Results: Data and Information

Current Practice

- Counties use existing data and models to assess vulnerability
- CalFIRE's Fire Hazard Severity Zones (FHSZ) is most frequently cited
- Local geographic, ecological features used to problem-frame for county-specific wildfire vulnerability

Future Opportunities

- Need to set criteria, metrics for monitoring & evaluation
- Including identification of cascading risks to support policy interventions

Spatial Data Type	Source
Wildfire Hazard Severity Zones	CAL FIRE/FRAP
Wildfire Threat	CAL FIRE/FRAP
Wildland Urban Interface	CAL FIRE/FRAP
Priority Projects	CAL FIRE/FRAP
Wildfire data	CalAdapt
Wildfire Mitigation Plans	California Office of Energy Infrastructure Safety
CalEnviroScreen	California Office of Environmental Health Hazard Assessment
CARB GIS Library	California Air Resources Board
Climate Change and Health Vulnerability Indicators for California	California Department of Public Health

Results: Regulatory Context

Current Practice

- FEMA, Cal OES regulations guide planning process for counties
- Hazard mitigation plans = "living documents"
- Emphasis on updating, can require technical consulting

Future Opportunities

- Develop institutional memory within local and regional agencies
 - FEMA Guidance
 - Consultancy work

Results: Planning Process

Current Practice

- Led external consultants
- Includes wide range of local, regional participants
- Processes based on tools, strategies from Disaster Management Act (2000)
- Must meet FEMA requirements for disaster plans
 - Prerequisite for accessing FEMA grants, funds

Future Opportunities

 Employing creative thinking, institutional experimentation outside of heavily structured regulatory requirements

Results: Funding & Resources

Current Practice

- Most jurisdictions rely on FEMA funding to support disaster planning process
- Supplemented with in-kind contributions from state-level resources

Future Opportunities

- Regional support that recognizes the transboundary nature of risks
- Recognition of dynamic vulnerabilities of communities
- Consideration of differential capacities across local governments

Thank you!

Kathryn Conlon <u>kcconlon@ucdavis.edu</u> Caitlin Jones <u>cgjones@ucdavis.edu</u> Eric Chu <u>ekch@ucdavis.edu</u>