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Global adoption of regenerative practices
across both grasslands and arable acreage \\
could sequester more than 100% of current .
A= onthropogenic emissions of CO2 and that
,4 @ stable soil carbon can be built quickly
FigPissd cnough fo result in a rapid drawdown of
222 atmospheric carbon dioxide.
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FOOD + POLICY FARMING HEALTH ENVIRONMENT DONATE

/‘\ Does Overselling Regenerative Ag’'s Climate
THE B . . .

enefits Undercut its Potential?
LAND
INSTITUTE A new white paper from the Rodale Institute and the Carbon Underground says that
s | A regenerative practices, if adopted around the world, could sequester all annual carbon dioxide

emissions. Critics warn the scientific data doesn’t support these claims, and may oversell the
benefits.

“Regenerative agriculture is a powerful drawdown, both to reduce emissions
and add new carbon sinks. But preposterous claims that are easily debunked
only undermine the message that regenerative agriculture is one of the few

areas that can (potentially) solve around 10 percent of climate change.”
Jon Foley, Project Drawdown
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Disturbance defines
our annual grain
agroecosystems
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Belowground Allocation (% of NPP)

40-70% o
growth
goes belowground
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Lauenroth and Gill 2003
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Loss of soil carbon to the atmosphere with plow conversion of
perennial plant communities to annual agriculture.
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TABLE 1 | Examples of agricultural management actions that can increase
organic carbon storage and promote a net removal of CO, from the atmosphere
and the main mode of action on the soil C balance (from Paustian, 2014).

Management practice Increased C Reduced C
inputs losses
Improved crop rotations and increased crop v
residues

Cover crops v

Conversion to perennial grasses and legumes v v
Manure and compost addition v

No-tillage and other conservation tillage v
Rewetting organic (i.e., peat and muck) soils v
Improved grazing land management v

Paustian et al. 2019

Q
AW
DRI
ol

< 4
//,



TABLE 1 | Examples of agricultural management actions that can increase

m organic carbon storage and promote a net removal of CO, from the atmosphere
LAND and the main mode of action on the soil C balance (from Paustian, 2014).
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Management practice Increased C Reduced C
inputs losses
Improved crop rotations and increased crop v
residues
Cover crops v
Conversion to perennial grasses and legumes v v
Manure and compost addition v
No-tillage and other conservation tillage v
Rewetting organic (i.e., peat and muck) soils v
Improved grazing land management v o
C 2))
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Table 2. Summary of field-based estimations of soil carbon accumulation rates in the conversion of
annual agriculture to perennial grassland or perennial bioenergy crops.

Mean C 1 .
Study Type Geographic Areas Accumulation sagelf;gs(cm) g?e:;;lgf;:; Reference
tha=!year—! P
Annual crops to perennial pasture or restored native grassland
. Central Europe,
Meta-analysis N. America, Russia 0.72 0-30 273 [93]
Meta-analysis Russia 0.96 20 45 [95]
Meta-analysis Tropical to temperate 0.33 5-300 39 [96]
Meta-analysis Americas, U.K., Australia 1.01 NR 2 23 [97]
Review N. Midwest USA 0.44-0.5 25 39 [98]
Review W. Canada 0.59 NR 17 [99]
Chronosequences Illinois, USA 0.43 100 16 [100]
Review France 0.50 NR - [101]
Review NR 0.3-1.0 NR - [102]
Annual crops to perennial bioenergy crops
Meta-analysis NR 1.14-1.88 0-150 23 [103]
Meta-analysis N. & S. America, Europe
Miscanthus S. Africa, Asia 1.09 100 13 [89]
Switchgrass 1.28 100 40 [89]
1 When a range is reported, it indicates that multiple soil depths falling within the range were included in the study;/ 1N\
2 NR = not reported. [ \,I ||

Crews and Rumsey 2017 7



Table 2. Summary of field-based estimations of soil carbon accumulation rates in the conversion of
annual agriculture to perennial grassland or perennial bioenergy crops.

Mean C Depths ! No. Studies or
THE : : -
L AND Study Type Geographic Areas ?;(;ET;IE?:E? Sampled (cm)  Sites Included Reference
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s | A Annual crops to perennial pasture or restored native grassland

Meta-analysis Nﬁﬁgi‘lﬁ’im 0.72 0-30 273 [93]
Meta-analysis Russia 0.96 20 45 [95]
Meta-analysis Tropical to temperate 0.33 5-300 39 [96]
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Wide hybridization

annual x perennial
crop relative

Perennial rice




Perennial rice terraces—Yunnan, China, 2019




de novo Domestication
Oilseeds

Wheatgrass

Legumes

The Land Institute

Silphium Sainfoin
Silphium integrifolium Onobrychis vicifolia

c10s: Scott Seirer




Silphium infegrifolium
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Breeding nursery of
intermediate wheatgrass | s0florets
(Thinopyrum intermedium)
that produces “Kernza®”
perennial grain
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Rooting extent of Intermediate wheatgrass
(Thinopyrum intermedium or Kernza®) compared to
annual winter wheat over four seasons

1ql

Peren




ﬁg\
LAND

IN STII_UTE

Total Root Biomass of annual wheat and perennial Kernza®
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Ecosystem carbon accumulation and % respiration losses measured in a Kernza®

(Thinopyrum intermedium) field in Salina, Kansas over five years by eddy co-variance

LAND

14.7 tons/ha (total)
3.7 tons/ha/yr
Range 5.68-1.21
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(tons / ha / yr)

Net ecosystem C accumulation

%C lost to resp
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% Gross ecosystem C uptake
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Differences in soil organic carbon per hectare to ~80 cm
After 16 years of annual and perennial cropping

Kernza accumulation rate is 1.06 t yr'! more than annual rotation

Tons organic C ha!
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Crews, unpublished



Intermediate wheatgrass (Kernzae) — Alfalfa biculture

R
a8

TP & 1 S e B\ [N

INSTITUTE




LAND

INSTITUTE

Annual N,O Emissions (kg hat)
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N20O emissions during two growing seasons in
unfertilized Kernza-Kernza (KK), Kernza-altalta (KA),
and fertilized Kernza-Kernza (KK+NP) plots
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Natural Ecosystem Agriculture

L;\HIEJD Perennial-High Diversity Annual-Low Diversity Perennial-Moderate Diversity

—

Ecosystem Services Ecosystem Dis-services Ecosystem Services

Soil formation Soil erosion Soil formation

Maximizes soil organic matter Reduces soil organic matter Maximizes soil organic matter

Resistant to pathogens and insects Vulnerable to pathogens and insects Resistant to pathogens and insects

Nutrients retained Unintentional nutrient losses Regulated nutrient losses

Weed establishment suppressed Weeds establish easily Weed establishment suppressed

High functioning soil microbiome Low functioning soil microbiome High functioning soil microbiome

High precipitation use efficiency Low precipitation use efficiency High precipitation use efficiency

No fossil fuel dependence Heavy fossil fuel dependence Reduced fossil fuel dependence A
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