

Wildfire risk mitigation in the WUI: From ignition-resistant to fire-resistant houses

Michele Barbato, PhD, PE, F.ASCE, F.SEI, F.EMI

Professor, Civil and Environmental Engineering Co-Director, UC Davis Climate Adaptation Research Center Director, Climate Initiative, CITRIS and the Banatao Institute University of California, Davis

2nd Symposium on Wildfire-Induced Air Pollution Assessment and Mitigation 3/23/2022

Outline

- Introduction and Background
- Research Updates on Earth Block Construction
 - □ Advancements in Finite Element Modeling
 - **Use of Sugarcane Bagasse Fibers**
- Preliminary Results on Wildfire Resilience

CLIMATE ADAPTATION

RESEARCH CENTER

- Ongoing and Future Work
- Conclusions

Introduction (1)

- Earthen structures are structures built using mainly soil
- Most ancient and sustainable building technique (> 10,000 years old)
- 30%-50% of world's population currently lives in earth-based dwellings
- ➢ Earthen structures are found all over the world

Earth construction areas of the world (Source: CRATerre/ENSAG/Auroville)

CLIMATE ADAPTATION

RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING

City of Potosí in Bolivia (1600-2100 CE)

Pueblo de Taos, NM, USA (1000-1450 CE)

Great Mosque of Djenné in Mali (300 BCE)

Introduction (2)

- > Cob
- Rammed earth
- Adobe
- Modern earth blocks
 - □ Compressed earth blocks (CEB)
 - □ Stabilized earth blocks (SEB)
 - Compressed and stabilized earth blocks (CSEB)

El Haj Yousif experimental school in Sudan (Adam, 2001)

Earthen house in Davis, CA, USA (1955)

Adobe

Cob

CIVIL AND ENVIRONMENTAL ENGINEERING CLIMATE ADAPTATION RESEARCH CENTER

Compressed and Stabilized Earth Blocks (CSEB)

CIVIL AND ENVIRONMENTAL ENGINEERING CLIMATE ADAPTATION RESEARCH CENTER

BANATAO

INSTITUTE

Results from Previous Studies

Front elevation

Rendering

Items	ICSEB Mortarless	Mortared CSEB	Light-frame Wood	Bricks	Concrete Blocks
Material (\$)	7,186	6,676	15,638	19,533	12,844
Labor (\$)	20,593	34,674	13,068	27,625	20,255
Overhead (\$)	11,112	16,540	12,264	19,840	13,882
Total wall cost (\$)	38,891	57,890	40,970	66,997	46,981

CLIMATE ADAPTATION

RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING

UNIVERSITY OF CALIFORNIA

Climate

INSTITUTE

FE Micro-Modeling of Masonry (1)

FE Micro-Modeling of Masonry (2)

RESEARCH CENTER

ENGINEERING

Climate

BANATAO

INSTITUTE

FE Micro-Modeling of Masonry (3)

Masonry Shear Walls: Experimental & FE response

RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING UCDAVIS UNIVERSITY OF CALIFORNIA

CSEB Masonry: FE responses

Comparison between experimental and FE responses for CSEB wallettes

Experimental crack patterns (MC Cuellar-Azcarate 2016)

Use of Sugarcane Bagasse Fibers (SBF) in CSEBs

- Sugarcane production in 2018: 746.8 million metric tons (MMT) in Brazil, 376.9 MMT in India, and 108.7 MMT in China
 - \rightarrow >400 million metric tons of SBF.
- ➢ USA sugarcane production in 2017: 28.0 MMT, mostly in Florida, Louisiana, and Texas,
 - \Box ~ 9 million metric tons of SBFs.
- Brittle behavior of CSEBs can be improved using fibers

CLIMATE ADAPTATION

RESEARCH CENTER

Sugarcane bagasse fibers

CIVIL AND ENVIRONMENTAL ENGINEERING

SBF stockpile in Alma Plantation, Louisiana

SBF-Reinforced CSEBs: Flexure Test

Unreinforced earth block

Crack pattern in unreinforced earth block

SBF-reinforced earth block

Crack pattern in SBF-reinforced earth block

Midspan deflection [mm]

CITRIS

Earth block with 6% cement

CIVIL AND ENVIRONMENTAL ENGINEERING

SBF-Reinforced CSEBs: Compression Test

Unreinforced earth block

SBF-reinforced earth block

SBF-Reinforced CSEBs: Durability Test

Wetting and drying durability test

California Wildfires History & Statistics

Data sources:

1. Estimated acres burned and confirmed loss of life: https://www.fire.ca.gov/incidents/

CLIMATE ADAPTATION

RESEARCH CENTER

- 2. Damaged/destroyed structures: <u>https://headwaterseconomics.org/natural-hazards/structures-destroyed-by-wildfire/</u>
- 3. Economic losses: https://www.ncdc.noaa.gov/billions/time-series/CA

CIVIL AND ENVIRONMENTAL ENGINEERING

Effect of Climate Change on Wildfire Hazard

Rising global temperatures are increasing the severity of wildfires across the western United States (Westerling 2018: CEC Report No. CCCA4-CEC-2018-014)

Wildfire simulations for California's fourth climate change assessment projecting changes in extreme wildfire events with a warming climate

CIVIL AND ENVIRONMENTAL ENGINEERING

CLIMATE ADAPTATION RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING

UNIVERSITY OF CALIFORNIA

RIS BANATAO

Direct contact with flames/surface fires

CLIMATE ADAPTATION

RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING

Heat radiation/crown fires

CIVIL AND ENVIRONMENTAL ENGINEERING

Photo by Bob Habeck. Credit: U.S. Forest Service, Southwestern Region, Kaibab National Forest

Ember attacks/firebrands

CLIMATE ADAPTATION

RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING UCDAVIS UNIVERSITY OF CALIFORNIA

California Building Code for WUI (Ch. 7A)

- Fire Resistance Test Standards >
 - **Exterior wall siding/sheathing**: 150-kW direct flame exposure for 10 minutes
 - **Exterior windows**: 150-kW direct flame exposure for 8 minutes
 - **Decking**: under-deck exposure to 80-kW intensity direct flame for 3 minutes.
 - **Roof**: comply with various requirements (for coverings, valleys, and gutters) of Chapter 7A and Chapter 15 of California Building Code
 - **Horizontal projection underside**: 300-kW direct flame exposure for 10 minutes
 - Other ignition-resistant materials (e.g., fire-retardant-treated wood): Chimney cleaned 30-minute ASTM E84 or UL 723 tests and screened
- **Exterior Protection**
- **Defensible Space** (5', 30', 100')

CIVIL AND ENVIRONMENTAL

ENGINEERING

CSEB Construction: Fire Resistance

© Michele Barbato and Nitin Kumar

CIVIL AND ENVIRONMENTAL ENGINEERING

CLIMATE ADAPTATION

RESEARCH CENTER

CSEB Materials

Laboratory tests	Standards	Properties	Values
Particle-size	ASTM D6913-04	Gravel (>2 mm) (%)	<1.00
analysis	D7928-16	Sand (2–0.063 mm) (%)	61.05
		Silt (0.063–0.002 mm) (%)	27.10
		Clay (<0.002 mm) (%)	11.86
Atterberg limits	ASTM D4318-10	Liquid limit LL (%)	32.00
		Plastic limit PL (%)	21.35
		Plasticity index PI (%)	10.65
Soil compaction	ASTM D698-12	Optimum moisture content (%)	20.16
tests		Maximum dry density (kg/m ³)	1711.8
		Specific gravity of soil (-)	2.59

CIVIL AND ENVIRONMENTAL ENGINEERING

CSEB High Temperature Test

CSEB Specimens After High Temperature Test

CSEB specimens (left to right): 24±2°C, 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C.

CSEB Flexure Test Results

	Modulus of Rupture		Modulus of Elasticity	
Temperature	Mean (MPa)	COV (%)	Mean (MPa)	COV (%)
24±2 °C	0.392	35.7	341.8	67.4
200 °C	0.317	25.5	194.5	29.6
400 °C	0.285	29.2	212.7	25.3
600 °C	0.291	28.0	145.7	35.1
800 °C	0.221	33.4	120.8	44.9
1000 °C	0.183	36.9	106.5	47.3

CIVIL AND ENVIRONMENTAL ENGINEERING

CSEB Flexure Test Results

CIVIL AND ENVIRONMENTAL ENGINEERING

CSEB Compression Test Results

Temperature	Wet Compressive Strength		Modulus of Elasticity	
	Mean (MPa)	COV (%)	Mean (MPa)	COV (%)
24±2 °C	2.654	13.9	96.0	26.3
200 °C	3.120	42.6	134.8	52.1
400 °C	3.608	45.5	139.0	50.5
600 °C	-	-	-	-
800 °C	-	-	-	-
1000 °C	-	-	-	-

CLIMATE ADAPTATION RESEARCH CENTER

CIVIL AND ENVIRONMENTAL ENGINEERING

CSEB Compression Test Results

CIVIL AND ENVIRONMENTAL ENGINEERING

Ongoing and Future Work

- Complete experimental testing under uniform heating.
- Experimental testing under gradient temperature (ASTM E119).
- Thermal properties (energy savings + wildfire indoor temperature).
- Evaluation of emissions under wildfire conditions (individual house and community level).

Conclusions

- Earthen masonry represents an affordable, safe, and sustainable technique for construction of houses and low-rise buildings
- Finite element modeling using detailed micro-models is an accurate tool to predict mechanical behavior
- Natural fibers can be effectively used to improve the ductility
- Research is ongoing to develop an affordable fire-resistant construction technique based on CSEBs
- Earthen masonry shows great potential to address climate change and equitable economic development
- Future research will focus on wildfire resilience and mitigation of wildfire smoke emissions

CIVIL AND ENVIRONMENTAL ENGINEERING CLIMATE ADAPTATION RESEARCH CENTER

Acknowledgements

- ➢ UCOP Lab Fees Program through award LFR-20-651032
- National Science Foundation through awards CMMI #1537078/#1850777
- LA BoR Economic Development Assistantship
- LSU Coastal Sustainability Studio
- Prof. F. Matta (University of South Carolina)
- Ms. Erika L. Rengifo-López (University of South Carolina)
- Prof. Robert Holton (Louisiana State University)
- Dr. Nitin Kumar (University of California, Davis)
- Numerous undergraduate students at UC Davis

Thank you Questions?

Contact Information:

Michele Barbato, PhD, PE, F.EMI, F.SEI, F.ASCE Email: <u>mbarbato@ucdavis.edu</u> Webpage: <u>https://barbatolab.sf.ucdavis.edu/</u>