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Wildfire Modeling
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Figure: WRF-SFIRE

Figure: WFDS

Figure: FARSITE

Figure: SPARK



Wildfire Modeling
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QES
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Figure: QES Modules



QES-Winds
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Figure: Initial wind field. 

[Bozorgmehr et. al., 2021]



QES-Winds
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Figure: (a) Cell type, (b) Prescribed 

velocity. [Bozorgmehr et. al., 2021]

(a)

(b)



QES-Winds
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Figure: Final velocity. [Bozorgmehr et. al. , 2021]



QES-Winds
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Figure: Building wake 

region. [Bozorgmehr 

et. al., 2021]



QES-Winds
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Figure: Street canyon. 

[Bozorgmehr et. al., 

2021]



Canopy Parameterizations
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Figure: Nondimensional velocity downstream of an isolated 

tree. [Margairaz et.al., 2022]



Canopy Parameterizations
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Figure: QES-Winds 

modeling of isolated 

trees in an urban 

environment. 

[Margairaz et.al., 2022]



Buoyant Plume

Figure: Single plume scaled by heat

flux. [Trelles, 1995]
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Buoyant Plume

Figure: Empirical centerline temperature 

and velocity, based on McCaffrey, 1983.

mmoody@ucdavis.edu 13



Buoyant Plume
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Buoyant Plume
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Buoyant Plume

Figure: Superposition 

of velocity fields, each 

square is distinct 

plume source.
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When Plumes Merge?

Bogus Creek Fire, Yukon Delta National Wildlife Refuge in 

southwest Alaska. - Matt Snyder
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QES-Fire Overview
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Merging Plume

Figure: Merging height with no mutual entrainment.
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𝜁1 = 𝜇𝑚𝑥0

𝑥0

(3)



Merging Plume

Figure: Schematic of two 

axisymmetric coalescing 

turbulent plumes.

[Kaye and Linden, 2004]
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𝑃1 𝑃2
𝑥0
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Merging Plume

Figure: Turbulent plume merging with entrainment.
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(5)𝜁𝑣 = 0.91 2𝜇𝑚𝑥0 − 𝜇𝑚𝑥0

(4)𝜇𝑚 = 𝑓(R, 𝑥0)



Merging Plume

Figure: Application of filter for merging plumes.
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Merging Plume

Figure: Schematic of 

merging plumes in 

QES-Fire.
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Merging Plume
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Figure: Heat release per fully burning grid cell is 2.1 kW/m3 with a maximum 

vertical velocity of 5.4 m/s. Cell dimensions are 1 m x 1 m x 0.25 m. 

Background winds are 5 m/s along the positive x-axis.



Unequal Plumes - Fuel

Figure: August Complex Fire 

- Mike McMillan/USFS

Figure: August Complex Fire

- InciWeb
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Unequal Plumes - Terrain

Figure: River Fire - AP Photo/Noah Berger
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Merging Unequal Plumes

Figure: Theoretical plume rise model at discrete sources.
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𝑃 =
ሶ𝑞′′𝑔

𝑐𝑝𝜌0𝑇0
(6)



Merging Unequal Plumes

Figure: Theoretical plume rise model at discrete sources.
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𝑃1 =
ሶ𝑞′′𝑔

𝑐𝑝𝜌0𝑇0

𝑃2 =
ሶ𝑞′′𝑔

𝑐𝑝𝜌0𝑇0

ሶ𝑞′′ = −𝜈
Δ𝑇

𝛿𝑧
(7)



Merging Unequal Plumes

Figure: Lowest elevation plume buoyancy calculated 

at ζ0 and plume is displaced (ζDisp).
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𝑃1 =
ሶ𝑞′′𝑔

𝑐𝑝𝜌0𝑇0 𝑃2 =
ሶ𝑞′′𝑔

𝑐𝑝𝜌0𝑇0

𝜅 =
𝑃2
𝑃1
=
Δ Τ𝑇2 Δ𝜁2
Δ Τ𝑇1 Δ𝜁1

(8)



Merging Unequal Plumes
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𝜇𝑚 = 𝑓(R, 𝑥0, 𝜅) (9)



Merging Unequal Plumes

Figure: Parameterizations 

applied for velocity field.
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2012 RxCadre L2F Simulation

Modeled the RxCadre 2012 L2F burn [Ottmer et. al., 2016] in QES-Fire.

Forested non-homogeneous burn conducted at Eglin Air Force base

• Previously modeled homogeneous burn for FireFlux II [Clements et.al., 2014]

• Fuel type: LANDFIRE 2012 Database

• Ground fuel moisture: 14%

• Fuel depth: 0.4 m

• Fuel load: 0.96 kg/m2

• Winds: 3 m/s at height of 9 m and 130
o

• Fire ignition tracked visually from aerial infrared, 

updated each QES-Fire time step
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2012 RxCadre L2F Simulation

Figure: L2F burn, Eglin Air Force Base, FL, 2012.
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2012 RxCadre L2F Simulation
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2012 RxCadre L2F Simulation

Figure: QES-Fire simulation of 2012 L2F burn.
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2012 RxCadre L2F Simulation

Figure: Burn perimeter 

calculated by QES-Fire 

at 18:40 UTC. 

Meteorological tower 

location shown for 

comparisons.



Vertical Winds: 3.8 m

Figure: Tower, 3.8 m 

height:

(a) Calculated 

vertical velocity 

from QES-Fire

(b) Temperature 

from tower
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Vertical Winds: 8.7 m

Figure: Tower, 8.7 m 

height:

(a) Calculated 

vertical velocity 

from QES-Fire

(b) Temperature 

from tower
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Parameterize in the WUI?
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Photo: Rocky fire in Lower Lake, CA. [Justin Sullivan, 2015]



Parameterize in the WUI?
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Photo: Cle Elum, WA. [Elaine Thompson, 2012]



Parameterize in the WUI?
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Photo: Fireworks sparked Traverse fire at Lehi, UT. [Justin Reeves, 2020]



Fire-induced winds vs. momentum
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Fire-induced winds vs. momentum
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Fire-induced winds vs. momentum
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Fire-induced winds vs. momentum
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Fire-induced winds vs. momentum

mmoody@ucdavis.edu 46



Fire-induced winds vs. momentum
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Bouyancy

Entrainment

Momentum



Fire-induced winds vs. momentum
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Buoyancy Forces

Shear Forces



Fire-induced winds vs. momentum
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Buoyancy Forces

Shear Forces
= Richardson #



Fire-induced winds vs. momentum
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Gr

Re2
Ri =

gβ(Tflame – Tair)h
3

ν2
Gr =

VH

ν
Re =



Fire-induced winds vs. momentum
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Figure: Richardson number as a function of velocity magnitude.

gβ(Tflame – Tair)h
3

(VH)2
Gr =

Ri < 0.1

Ignore free 

convection

Ri > 10

Ignore forced 

convection

0.1 < Ri < 10

Account for both



Fire-induced winds vs. momentum
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Figure: Velocity field with fire and building parameterizations. 

Vertical velocity contours (red).



Thank You
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